A second-order positivity preserving scheme for semilinear parabolic problems
نویسندگان
چکیده
In this paper we study the convergence behaviour and geometric properties of Strang splitting applied to semilinear evolution equations. We work in an abstract Banach space setting that allows us to analyse a certain class of parabolic equations and their spatial discretizations. For this class of problems, Strang splitting is shown to be stable and second-order convergent. Moreover, it is shown that exponential operator splitting methods and in particular the method of Strang will preserve positivity in certain situations. A numerical illustration of the convergence behaviour is included.
منابع مشابه
An ETD Crank-Nicolson Method for Reaction-Diffusion Systems
A novel Exponential Time Differencing (ETD) Crank-Nicolson method is developed which is stable, second order convergent, and highly efficient. We prove stability and convergence for semilinear parabolic problems with smooth data. In the nonsmooth data case we employ a positivity-preserving initial damping scheme to recover the full rate of convergence. Numerical experiments are presented for a ...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملA discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials
We consider a class of time dependent second order partial differential equations governed by a decaying entropy. The solution usually corresponds to a density distribution, hence positivity (non-negativity) is expected. This class of problems covers important cases such as Fokker-Planck type equations and aggregation models, which have been studied intensively in the past decades. In this pape...
متن کاملDecay and eventual local positivity for biharmonic parabolic equations
We study existence and positivity properties for solutions of Cauchy problems for both linear and semilinear parabolic equations with the biharmonic operator as elliptic principal part. The self-similar kernel of the parabolic operator ∂t + ∆ 2 is a sign changing function and the solution of the evolution problem with a positive initial datum may display almost instantaneous change of sign. We ...
متن کامل